skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Ka_Ram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cell culture encompasses procedures for extracting cells from their natural tissue and cultivating them under controlled artificial conditions. During this process, various factors, including cell physiological/morphological properties, culture environments, metabolites, and contaminants, have to be precisely controlled and monitored for the survival of cells and the pursuit of the desired properties of the cells. This review summarizes recent advances in sensor technologies and manufacturing strategies for various cell culture platforms using traditional plastics, microfluidic chips, and scalable bioreactors. We share the details of newly developed biological sensors, chemical sensors, optical sensors, electronic chip technologies, and material integration methods. The precise control of parameters based on the feedback by these sensors and electronics enhances cell culture quality and throughput. 
    more » « less